Designing forest access to meet future challenges

28.06.2017 SURGE Project St. Petersburg

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Dirk Jaeger Chair of Forest Operations

Outline

- 1. Basics of forest access
- 2. Road characteristics
- **3. Challenges and solution strategies**
 - 3.1 Access to timber resources
 - 3.2 Emergency access
 - 3.3 Climate change
 - **3.4 Technical advancement**

4. Summary

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Functions of forest access

- 1. Enable people to access forest area/stands
- 2. Connects to public infrastructure (most often public road network)

- In middle Europe forest roads are the most common mean of forest access
- Access to forests by roads is precondition for any forest management and it allows the use of forest for different purposes/functions

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG Forest

. Designing forest access to meet future challenges

Albert-Ludwigs-Universität Freiburg

NI REIBURG

Timber transport

90% of timber transports by trucks

Long wood hauling max. stem length 21 m

Albert-Ludwigs-Universität Freiburg

Short wood transport

 average payload 20 t

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Recreation

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Sports

Albert-Ludwigs-Universität Freiburg

Bild: feuerwehr-landwehrhagen.de, 2013

UNI FREIBURG

- Any access system consists of road transportation and off-road transportation based on
 - Road network for road transportation (connecting function, long distance transport)
 - Off-road access for accessibility of forest stands (access function, short distance transport)
- For off-road (stand) access forest roads are combined with skid trails/strip roads, tractor roads or cable lines

- **1. Basics of forest access**
- 2. Road characteristics

Albert-Ludwigs-Universität Freiburg

Three perspectives to describe a forest road

2. Horizontal alignment

Cross section

Road width Width of right-of-way Road surface (type, shape/profile) Verge Ditch Side slopes 1:1 and 1:1.5 Bearing capacity 80 to 90 MPa for $M_E(E_{v2})$

Horizontal alignment

Alternation of curves and Minimum curve radius 20 m/35 m Switch backs 12 m Straight line segments >25 m

Albert-Ludwigs-Universität Freiburg

Vertical alignment

- 1. Basics of forest access
- 2. Road characteristics
- **3. Challenges and solution strategies**
 - 3.1 Access to timber resources

Albert-Ludwigs-Universität Freiburg

Forest area by type of ownership

Basis: : Total forest 11,419,124 hectares

Source: BMEL - BWI3 (3rd National Forest Inventory)

Albert-Ludwigs-Universität Freiburg

Forested land and growing stock by ownership [1000 ha, 1000 m³ over bark]

	State	Communal	Federal	Private	All types of
	forest	forest	forest	forest	ownership
Forested	3,310	2,220	403	5,486	11,419
land	(29%)	(19%)	(4%)	(48%)	(100%)

Source: BWI III 2012

Albert-Ludwigs-Universität Freiburg

Forested land and growing stock by ownership [1000 ha, 1000 m³ over bark]

	State forest	Communal forest	Federal forest	Private forest	All types of ownership
Forested	3,310	2,220	403	5,486	11,419
land	(29%)	(19%)	(4%)	(48%)	(100%)
Growing	1,024,050	691,561	90,000	1,857,085	3,662,972
stock	(28%)	(19%)	(2%)	(51%)	(100%)

Source: BWI III 2012

Albert-Ludwigs-Universität Freiburg

SAL	S
	5
	_ <u>m</u> _
	ZW

2012	Growth [Mio. m³ u. b.]*	Harvesting volume [Mio. m³ u. b.]*	Potential use [Mio. m ³ u. b.]
State Forest	28,6	22,1	6,5
Federal Forest	2,5	1,6	0,9
Community Forest	19,1	15,3	3,8
Private Forest	49,1	36,7	12,4
Total	99,2	75,7	23,5

Source: BWI III 2012

Small areas of private woodlots

. Designing forest access to meet future challenges Dirk Jaeger

University of Freiburg

JNI REIBURG

Albert-Ludwigs-Universität Freiburg

Province	Provincial Forest [m/ha]
Rheinland-Pfalz	49.5
Bayern	35.0
Sachsen	26.2
Baden- Württemberg*	52.0
NRW*	39.0

* All types of ownership

Road density [lfm/ha] with index of road density/100 m³ stocking volume/ha [over bark]

Source: In PEFC RLP 2015: (Zentralstelle der Forstverwaltung RLP, AFLUE RLP), PEFC BW 2015, PEFC Bayern 2015, PEFC NRW 2016, LFP Sachsen 2002, BWI III 2012

Albert-Ludwigs-Universität Freiburg

Province	Provincial Forest [m/ha]	Community forrest [m/ha]	Private Forest [m/ha]
Rheinland-Pfalz	49.5	38.1	21.8
Bayern	35.0	24.0	24.0
Sachsen	26.2	21.5	16.9
Baden- Württemberg*	52.0		
NRW*	39.0		

* All types of ownership

Road density [lfm/ha] with index of road density/100 m³ stocking volume/ha [over bark]

Source: In PEFC RLP 2015: (Zentralstelle der Forstverwaltung RLP, AFLUE RLP), PEFC BW 2015, PEFC Bayern 2015, PEFC NRW 2016, LFP Sachsen 2002, BWI III 2012

Albert-Ludwigs-Universität Freiburg

A A K		2
		BUI
	Z	E .
	5	Ľ

Province	Provincial Forest [m/ha]	Index [Ifm/ha/ 100 m³]	Community forrest [m/ha]	Index [lfm/ha/ 100 m³]	Private Forest [m/ha]	Index [lfm/ha/ 100 m³]
Rheinland-Pfalz	49.5	16.3	38.1	13.1	21.8	6.7
Bayern	35.0	9.9	24.0	6.9	24.0	5.5
Sachsen	26.2	7.8	21.5	7.3	16.9	5.5
Baden- Württemberg*	52.0	13.8				
NRW*	39.0	12.6				

* All types of ownership

Road density [lfm/ha] with index of road density/stocking volume/ha [m³ over bark]

Source: In PEFC RLP 2015: (Zentralstelle der Forstverwaltung RLP, AFLUE RLP), PEFC BW 2015, PEFC Bayern 2015, PEFC NRW 2016, LFP Sachsen 2002, BWI III 2012

Objective Enhanced access to timber resources of small private woodlands

Solution strategy

- Develop specific road design for private woodlots
- Establish Master plans of forest road networks in private woodlots
- Allow for higher road densities for easier access and comfort to ensure continuation of sustainable forest management (e.g. farmers in secondary employment can use farm machinery for timber extraction)
- Continue financial support for forest road construction

Outline

- 1. Basics of forest access
- 2. Road characteristics
- **3. Challenges and solution strategies**
 - 3.1 Access to timber resources
 - 3.2 Emergency access

 $\overline{\mathbf{m}}$

Source: ForstBW

0

- —MTB and hiking accidents
 - Forest worker accidents

Source: Bergwacht Schwarzwald 2017

Albert-Ludwigs-Universität Freiburg

Objective: All year forest access for efficient emergency rescue

Solution strategy

- Sufficient density of year round trafficable forest roads
- Assign easy to reach emergency meeting points
- Dynamic database of actual road condition for effective navigation
- Close cooperation with emergency services

- 1. Basics of forest access
- 2. Road characteristics
- **3. Challenges and solution strategies**
 - 3.1 Access to timber resources
 - 3.2 Emergency access
 - 3.3 Climate change

- Year round precipitation, less frozen ground, higher risks of soil disturbance
- Heavy precipitation events with high risks of erosion and washouts
- Draught periods with road damage by losing fine particles (dust)
- Handling of unforeseen timber volumes
 - highly concentrated (windthrow, beatle infection)
 - scattered (infected single trees)

3.3 Climate change

Albert-Ludwigs-Universität Freiburg

Source: LUBW 2015.

3.3 Climate change

Albert-Ludwigs-Universität Freiburg

22

Objective: Full range year round ready to use basic access

Solution strategy

- Needs adapted road network and off-road transportation system for reasonable extraction distances
- Integration of road network in overall transportation system including railway and waterways
- Ensure proper road profile/cross section for water run-off (crowning of road)

Objective: Full range year round ready to use basic access

Solution strategy (continued)

- Sufficient dimensioning of road drainage systems (ditches and culverts)
- Use of one sided sloped road profiles for easier maintenance (especially for forest roads in small woodlands with low traffic frequency)

Road profiles

Objective: Full range year round ready to use basic access

Solution strategy (continued)

- Sufficient dimensioning of road drainage systems (oversizing of ditches and culverts)
- Use of one sided road profiles for easier maintenance (especially for forest raods in small woodlands with low traffic frequency)
- Intensive road maintenance (more frequent reprofiling of road surface including ditch and culvert clearing)

Objective: Full range year round ready to use basic access

Solution strategy (continued)

 Change of road design: Reduction of maximum allowable road gradient

Objective: Full range year round ready to use basic access

Solution strategy (continued)

- Change of road design: Reduction of maximum allowable road gradient
- Increase number of cross drains and off-take ditches to avoid water accumulation in ditches
- Creation of retaining ponds in forest stands for minimizing peaks of surface run-off into aquatic systems

- 1. Basics of forest access
- 2. Road characteristics
- **3. Challenges and solution strategies**
 - 3.1 Access to timber resources
 - 3.2 Emergency access
 - 3.3 Climate change
 - **3.4 Technical advancement**

Albert-Ludwigs-Universität Freiburg

Supporting winch/Tethering winch (Synchro winch)

牵引绞盘机和同步绞盘机作为辅助

BURG

Albert-Ludwigs-Universität Freiburg

CAT552 (with winch) Cable assisted harvesting and forwarding

https://www.youtube.com/watch?v=FS0BWqhIM8A

. Designing forest access to meet future challenges Dirk Jaeger Chair of Forest Operations University of Freiburg

Albert-Ludwigs-Universität Freiburg

Model	CAT 330D L
Engine Capacity	200 kW
Gross Weight	47 900 kg
Work Width	2 920 mm
Boom Reach	13 900 mm
Model	CAT 552 (with Satco head)
Model Engine Capacity	CAT 552 (with Satco head) 226 kW
Model Engine Capacity Gross Weight	CAT 552 (with Satco head)226 kW36 124 kg (excl. Head)
Model Engine Capacity Gross Weight Work Width	CAT 552 (with Satco head) 226 kW 36 124 kg (excl. Head) 2 591 - 2 870 mm

Source: geniusstrand.de 2009, Caterpillar Inc. 2017

IBURG

Albert-Ludwigs-Universität Freiburg

All pictures taken by John Sessions Oregon State University

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Albert-Ludwigs-Universität Freiburg

Objective: Adapt road network to technical innovation

Solution strategy

- Consider future changes in extraction techniques when designing forest roads for the next 50 years
- Favor top ridge roads in steep terrain for cable yarding and tethered ground based operations
- Less use of slope diagonal roads and valley roads
- Less use of tractor roads

- 1. Basics of forest access
- 2. Road characteristics

3. Challenges and solution strategies

- 3.1 Access to timber resources
- 3.2 Emergency access
- 3.3 Climate change
- **3.4 Technical advancement**

4. Summary

Future challenges include

- Access to timber resources
- Emergency access
- Climate change
- Technical advancement

With thoughtful road network planning, road design, construction techniques and road maintenance concepts we should be able to handle these challenges.

Thank you for your interest!

Prof. Dr. Dirk JaegerProfessur für Forstliche VerfahrenstechnikChair of Forest OperationsWerthmannstraße 6, 79085 FreiburgTelefon:0761 / 203 37 89E-Mail:dirk.jaeger@foresteng.uni-freiburg.de, djaeger@gwdg.de

UNI FREIBURG