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A B S T R A C T

Background: Retention forestry is a management strategy aiming to mitigate biodiversity loss by retaining
structural elements such as dead trees that would otherwise be removed. Here we analyze the biomass, diversity
and abundance among forest beetles collected using window traps on 128 1-ha forest sites reflecting gradients in
the amount of structural elements in southwestern Germany.
Results: We found that beetle biomass increased with mean diameter at breast height (a measure of tree size), and
decreased with stand structural complexity. Biomass of individual feeding guilds responded differently to forest
structural elements, namely lying deadwood, understory complexity, tree basal area and stand structural
complexity. Beetle family diversity increased with the effective number of layers, i.e. 1-m forest strata occupied by
vegetation assessed via terrestrial laser scanning. Abundance of feeding guilds responded to only elevation and
share of deciduous trees. Community composition in terms of biomass was structured by forest elements similar to
biomass of individual feeding guilds, with the addition of lying deadwood. This differed from community
composition in terms of abundance of feeding guilds, which was structured by primarily standing deadwood
volume and share of deciduous trees.
Conclusions: Our results show that biomass, diversity and abundance respond differently to forest structural el-
ements. This suggests that the concurrent prioritization of multiple forest elements is needed to promote forest
beetles, with more focus placed on the differing resource needs among feeding guilds. In addition, retention
strategies should also consider the varying responses of beetle biodiversity metrics when assessing the importance
of forest structural elements.
1. Introduction

Retention forestry is a relatively recent advent in the field of natural
resource management (Gustafsson et al., 2012) that emphasizes actions
to preserve forest structural elements which otherwise would have been
removed or altered. The goal of preserving these elements is the inte-
gration of biodiversity conservation into forest management for sus-
tainable use. Such elements include dead wood as a resource for forest
specialist taxa (Storch et al., 2020; Eckerter et al., 2021), stands of living
trees for habitat (Gustafsson et al., 2012) or the maintenance of contin-
uous forest cover (Gustafsson et al., 2019). Retention, thus, contrasts
previously dominating approaches to utilizing forest resources which
have been based more or less on timber yield and often involved
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clear-cutting (L€amås et al., 2015).
Understanding how various metrics of beetle biodiversity may in-

crease with more forest structural elements can provide insights in how
best to support forest insect communities. Beetles are the largest and
most diverse animal order (Stork, 2018), representing numerous feeding
guilds which can be broadly categorized as carnivores, fungivores, her-
bivores, omnivores, palynivores, parasitoids, saprovores, and saproxylics
based on feeding modes (Freude et al., 2009). Apart from their impor-
tance in forest ecosystem processes (Schoenly et al., 1991; Schigel, 2011;
Skelton et al., 2019), beetles comprise the majority of saproxylic insects
in forests (Ulyshen and �Sobotník, 2018). Saproxylic taxa are sensitive to
forest management which has involved the removal of deadwood (Sei-
bold and Thorn, 2018), having additional negative impacts on other
many.
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feeding guilds (Sandstr€om et al., 2019). Furthermore, variation in forest
structural elements can result from direct management actions such as
selective harvesting, removal of deadwood, and quarantine cutting
(Ammer et al., 2010), having cascading effects on beetle feeding guilds.

Few studies have focused on the biomass of insects as related to forest
management (Seibold et al., 2019) and to the best of our knowledge none
have analyzed biomass, diversity and abundance of feeding guilds
together along retention forestry structural gradients. While several
studies focused on anthropogenic drivers of changes in forest insect
community metrics (Netherer and Schopf, 2010; Sall�e et al., 2014; Sei-
bold et al., 2014, 2019; Pureswaran et al., 2018; Harris et al., 2019),
knowledge on specific forest retention measures, which have the po-
tential to support forest insect communities via influencing forest struc-
tural elements is scarce. Several studies have shown that forest structural
elements such as multi-layered vegetation (Knuff et al., 2019), the
amount of deadwood left in forest stands (Eckerter et al., 2021; Haeler
et al., 2020) and stand size and connectivity (Correcher et al., 2019) can
increase relative abundance of insects. Many studies however often
exclusively use metrics such as diversity, abundance, or biomass of single
functional groups or feeding guilds to study these trends (Eckelt et al.,
2017; Lachat and Müller, 2018; Forister et al., 2019; Grinde et al., 2020;
Eckerter et al., 2021). The parallel and partly synonymous consideration
of different metrics has led to mixed conclusions as to which actions may
be the best for promoting insects as these metrics do not necessarily
respond to the same drivers (Macgregor et al., 2019; Vereecken et al.,
2021). Therefore, one metric of insect communities may not be exclu-
sively better than the others for measuring management actions on insect
biodiversity, as these may respond quite differently. Biomass for example
is highly influenced by the sizes of the insects sampled (Sample et al.,
1993) whereas abundance may be strongly influenced by the presence of
locally numerous taxa (Gaston and Lawton, 1988). Diversity can also be
strongly influenced by ubiquitous species, but unlike abundance the
presence of less common taxa will have an effect on the measure used.
Varying responses from individual insect community metrics are espe-
cially important when considering feeding guilds or classifications based
on feeding/resource-use (Lassau et al., 2005), which may respond
differently to the same environmental elements (Pilskog et al., 2016;
Wetherbee et al., 2020). As a consequence, little research has examined
the potential of forest management strategies to promote forest insect
biodiversity by examining the varying effects that components of such
strategies have on diversity as well as the biomass and abundance of
feeding guilds.

In the present study, using a space-for-time approach (Blüthgen et al.,
2022) we test whether biomass and abundance among feeding guilds as
well as family diversity are related to retention structural variables
associated with forest heterogeneity, deadwood amounts and understory
structure. We hypothesize that beetle diversity will increase with
increasing forest heterogeneity, measured using variables such as tree
species richness, deadwood diversity, stand structural complexity and
canopy gap fraction. We hypothesize that beetle biomass and abundance
will increase with increasing amount of forest habitat, measured by
retention forestry metrics such as forest cover and forest vegetation
strata. We also hypothesize that both metrics of more specialized feeding
guilds will increase with the increasing abundance of resources used
exclusively by those groups. For example, fungivores will be related to
decaying deadwood, which is a substrate for fungal resources, or herbi-
vores will be related to herb cover/understory complexity, while sap-
roxylics will increase with deadwood volumes. Furthermore, we
hypothesize that the biomass and abundance of more generalist feeding
guilds (carnivores, omnivores, saprovores) will increase with increasing
forest habitat (greater forest cover, more forest vegetation strata). We
expect these biomass and abundance increases to be due to increased
resources provided by greater amounts of forest habitat such as larger
amounts of prey items and more decaying non-woody plant material. For
beetle community composition, in terms of both biomass and abundance,
we hypothesize that the forest variables related to resources will
2

structure communities.

2. Materials and methods

2.1. Study region & plots

The study was conducted on 135 1-ha plots in the southern Black
Forest in Baden-Württemberg, Germany. These plots were established in
2016 by the ‘Conservation of Forest Biodiversity’ (ConFoBi) project
(Storch et al., 2020). The Black Forest consists of mixed forest comprised
of mainly Norway spruce (Picea abies L.), European beech (Fagus sylvatica
L.), Silver fir (Abies albaMill.), maple (Acer spp.), and oak (Quercus spp.),
covering a complete gradient from completely coniferous to deciduous
stands. Research plots range in elevation between 443 and 1,334 m
above sea level, with an average of 819 � 183 m (mean � SD). They
reflect variations in slope (1�‒34�, 15� � 9�) and aspect (3�‒360�). Tree
communities vary in number of trees with diameter at breast height
(DBH) greater than 7 cm (98–1,212, 425 � 205), tree basal area (BA)
(9–73 m2, 34 � 9 m2), tree species richness (2–15, 5.5 � 2.2), and the
proportion of deciduous species (0–96%, 28% � 25%). Management
regimes have created gradients ranging from even-aged stands of indi-
vidual species (mainly planted spruce that naturally would not occur in
high abundance), to uneven-aged stands of European beech and un-
managed forest reserves. In the past, economic management of the Black
Forest has resulted in large swaths of Norway spruce, while more recent
management regimes have focused on converting forests to
Beech-dominated, representing the potential natural vegetation of the
area. Additionally, conservation initiatives have focused on the retention
of potential habitat trees (Storch et al., 2020), and standing deadwood
structures to support biodiversity. Plots reflect such con-
servation/retention measures in a design that uses variation in space to
(also) infer variation in time (sensu Blüthgen et al., 2022) along gradients
of the number of standing dead trees, standing and lying deadwood
volumes as well as a plethora of structural and compositional forest
variables. For more detailed information on the ConFoBi plot selection
and forest variables see Storch et al. (2020). For a map of the study area
see supplementary material (Fig. S1).

2.2. Forest variables

Plot-level forest variables were measured during full forest in-
ventories conducted in 2017 and 2018. From these inventories mean
diameter at breast height (DBH), tree basal area (BA), deciduous tree
share, standing/lying deadwood volumes, and plot elevation were ob-
tained. Standing and lying deadwood diversity indices used in the pre-
sent study were calculated by Knuff et al. (2020) following the procedure
described in Siitonen (2001). These indices represent all combinations of
deadwood species, types and decay stages, for each unit of standing or
lying deadwood greater than 7 cm diameter present at each plot: the type
(coniferous vs. broadleaved), decay class (1–2, 3, 4–5), and diameter in
10 cm classes. For example, a standing dead conifer decayed at class 1–2
with a diameter of 10–19 cmwould represent one unique deadwood type
in the standing deadwood diversity index. The standing and lying
deadwood diversity indices were summed to create combined deadwood
diversity used in analyses. These indices were combined to account for
the potential additive effect of different deadwood types on beetles
(Parisi et al., 2018). Herb cover and understory species richness were
measured from six 5 m � 5 m subplots in 2017 (Helbach et al., 2020).
Canopy gap fraction (percentage of open area in tree canopy) was
measured from images taken during unmanned aerial vehicle flights over
plots (Frey et al., 2018). Forest cover (percentage of forested area in 1
km2 surrounding plot centers) values were calculated using aerial image
data by Storch et al. (2020). The remotely sensed indices, stand structural
complexity index (SSCI), effective number of layers (ENL) and understory
complexity index (UCI) were derived from terrestrial laser scans at insect
trap locations (Frey et al., 2019), which were the northwest and
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southeast corners within each plot. Mean values for each index were
calculated from the two trap locations to generate one value per plot. The
SSCI is a measure of geometric complexity of forest stand vegetation.
SSCI correlates with stand structure, microclimatic variance and can be
used to differentiate among forest types (Ehbrecht et al., 2016). Scanning
is not limited in height, and relays the points of a vertical scanline of the
whole plot. Points on the scanline are connected to a polygon, the fractal
dimension of which is expressed as the ratio of area to perimeter. The
ENL is an index for measuring the vertical height of vegetation layering,
or forest strata is correlated with more diverse and more evenly layered
stands. ENL algorithms consider 3D space in voxels, marking them filled
when containing at least one point from the laser scan. The ratio between
filled and unfilled voxels is then summarized in 1 m thick layers,
providing a histogram of space filled by vegetation as a function of
height. A value for the ENL is then an inverse Simpson index of the di-
versity between these layers (Ehbrecht et al., 2016). The UCI represents
an index similar to the SSCI but for vegetation around trap locations at
specific strata. It is computed using laser scans on a horizontal plane,
fromwhich a ratio of perimeter to area is calculated (Willim et al., 2019).
For additional information about the remotely sensed indices used for
this study see Knuff et al. (2020). For summary information of forest
variables see Table 1.

2.3. Insect sampling/identification

Window traps were used to sample beetle communities (Knuff et al.,
2019). Traps were constructed using two 50 cm � 24 cm acrylic glass
rectangles with a cone at the top and a modified plastic container at the
bottom. Traps used no bait or scents, with funnels camouflaged in green
to avoid biased sampling of certain insect groups and to ensure that only
random flying insects were collected. Two traps were placed on each
study plot ~75 m apart from each other toward the northwest and
southeast corners. Sampling was conducted continuously with four-week
collection intervals between March and August of 2017. After collection,
insects were sorted to order level, with Coleoptera identified to family
(Freude et al., 2009). Bark beetles were identified to sub-family (Scoly-
tinae) level to allow for differentiation from true weevils (Curculioni-
dae), and considered as one distinct group in diversity analyses. While a
high taxonomic resolution is always desirable, when comprehensively
sampling many plots it is often logistically not feasible to identify all
Table 1
Forest explanatory variables characterizing the 128 plots (1 ha each) used for analyses
assumed collinearity (ρ > 0.70) following pairwise analyses, the more ecologically re
variables can be found in the supplement, Table S3.

Variable Unit Definition

Average elevation m Average of min and max heights above sea lev

Deadwood diversity index
(combined)

– Sum of unique standing and lying deadwood t

Deadwood volume (lying) m3 Volume of all lying deadwood structures >7 c
Deadwood volume (standing) m3 Volume of all standing deadwood structures >

Deciduous tree share % Proportion of trees by count in plot that are de
Forest cover % Proportion of forested area within 1 km2 of pl
Gap fraction % Ratio of open area not covered by tree canopie

flights
Herb cover % Ratio of area on ground with herb layer presen
Mean diameter at breast height
(DBH)

cm Mean diameter at breast height of all trees >7

Mean effective number of layers
(ENL)

– Mean number of 1m wide strata with filled 3D
window trap locations on each plot

Mean Stand structural complexity
index (SSCI)

– Mean index characterizing the diversity of phys
each plot

Mean understory complexity index
(UCI)

– Mean index characterizing complexity of vege
measured at window trap locations on each pl

Tree basal area m2 Basal area of all living in trees >7 cm DBH
Tree species richness – Number of tree species identified on plots
Understory species richness – Number of plant species identified in the unde

3

collected specimens to species level. In such cases, surrogacy by a higher
taxonomic level (e.g. family) can provide reliable information about
species diversity (Williams and Gaston, 1994; Williams and Gaston,
1994; Balmford et al., 1996; Zou et al., 2020). During identification,
specimens were classified according to body length (mm) into one of
seven size classes: <2.5, 2.5–5, 5–10, 10–15, 15–20, 20–25, >25. In
addition to morphological identification, metabarcoding data of the same
samples from bottom collection units were used to assign unidentified
specimens (~15%) of predominantly the <2.5 mm (43.4%) and 2.5–5
mm (48.7%) size classes to families. This was done by cross-referencing
the number of unidentified specimens in each size class with the pro-
portion of OTU reads from species within the same size classes. The
proportions of OTU reads from families within one size class were
applied to the number of unidentified specimens in the same size class to
assign family identifications. This method was used for only those fam-
ilies exclusively revealed by metabarcoding which had previously not
been identified morphologically in a sample, and were therefore among
the unidentified specimens. If no additional families were revealed by the
metabarcoding dataset, unidentified specimens (~7%) were excluded
from further analyses. For additional information on metabarcoding
procedures see the supplementary material.

Families were assigned to guilds according to their most common
modes of feeding observed during the longest portion of lifecycles
(Freude et al., 2009). Family level identification allows to infer common
modes of feeding (Simberloff and Dayan, 1991; Grimbacher and Stork,
2007; Wardhaugh et al., 2012). For example, the majority of the species
within the family Cerambycidae feed on deadwood and develop within
deadwood structures as larvae. By comparison to the larval stage, most
species of this family have short adult lifespans (Haack et al., 2017),
during which they typically do not feed on deadwood. Thus, this family
was considered saproxylic (feeding on dead/decaying wood) in our data.
In total, eight feeding guilds were considered: carnivores (feeding on
other animals), fungivores (those feeding on fungal mycelia/spores/-
fruiting bodies), herbivores (feeding on living plant material), omnivores
(foraging from multiple different sources), palynivores (feeding on pol-
len/nectar), parasitoids (requiring the death of a host as part of repro-
ductive cycle), saprovores (feeding on decaying organic material
excluding deadwood), and saproxylics. Individuals of the family Silphi-
dae (3%) were excluded from analyses due to their attraction to decaying
material present in window traps, and the related potential sampling
, with corresponding summary statistics. Variables were excluded on the basis of
levant variable being kept. A summary of Spearman's correlations among forest

Range Mean � SD

el 443–1,334 819.8 �
183.8

ypes. 0–93 39.9 � 15.3

m diameter 2.7–282.9 41.7 � 42.3
7 cm diameter 0–2,163.4 138.3 �

288.4
ciduous species 0–96 28 � 25
ot centers 9–81 61 � 14
s as seen from above during unmanned aerial vehicle 0–40 9 � 10

t 0.14–73.00 35 � 18
cm diameter on each plot 12–52 30 � 8

voxels indicating presence of vegetation measured at 6.6–29.3 16.1 � 4.5

ical characteristics measured at window trap locations on 2.1–10.3 4.2 � 1.5

tation between, respectively, 1.5–2 m, and 1–5 m height
ot

2.4–4.2
3.4–4.3

3.4 � 0.3
4.0 � 0.1

9–73 34 � 9
2–15 5.5 � 2.2

rstory (0–5 m) 2–71 31 � 14
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bias. To reduce complexity, the relative abundance and biomass of
parasitoid and palynivorous taxa were added to carnivores’ and herbi-
vores’ respectively. For additional information about feeding guild
classification, see supplementary material (Table S1).

2.4. Biomass measurement

While drying and weighing are standard for biomass measurement,
this was not possible with all specimens collected (41,867). Therefore,
after identification and size classification, representative samples of each
family were taken using as many individuals as were available, without
taking more than 60 for any single representative group. Each individual
in representative samples was measured for precise length (front of the
head to tip of abdomen) and width (pronotum at widest point) values
(nearest 0.01 mm). While interspecific variation results in a margin of
error when calculating family level allometries, accounting for the size
and region of each individual reduces this error, as values calculated are
based on allometries of similarly sized specimens (Ganihar, 1997). These
specimens were then dried at room temperature under a fume hood for
no less than 72 h and dry weight recorded (at 0.0001 g) using a precision
balance. Individuals of the same taxon weighing less than 0.0001 g were
weighed together, with mean values taken to represent each. From these
data, allometric regressions were performed to create two power curves
for each taxon (Wardhaugh, 2013): one for length-width and one for
length � width-biomass. The length-width allometry was used to calcu-
late a width value for each size class and taxon. The calculated width
value was then multiplied by the median length value of each size class to
generate length � width values for each size class and taxon. The length
�width values were then used in allometries to calculate biomass of each
individual in each size class and taxon. The use of length � width values
has been shown to more accurately predict the biomass of invertebrates
than length values alone (Wardhaugh, 2013). While many equations are
available for calculating allometries, power functions have been found to
best estimate the dry weight of Coleoptera adults (Ganihar, 1997).
Biomass of each family per sample was calculated by multiplying the
number of specimens by the estimated biomass value for its respective
size class, then summing values from size classes. When fewer than five
individuals of a family were available for measurement in representative
samples, the power curve of its superfamily was used. If the power curve
of a superfamily was also not available, a power curve using all measured
Coleoptera specimens of the relevant size class was used. For summary
information and allometric formulas for each family, see supplementary
material (Table S2).

2.5. Statistical analyses

Beetle samples were pooled per plot. Shannon diversity values were
calculated for each plot using the number of individuals collected from
each family (R package vegan, Oksanen et al., 2017). Total beetle
biomass was calculated by summing the biomass of all families. All fixed
effects were assessed for collinearity using Spearman's coefficient (Dor-
mann et al., 2013). Spearman's coefficient was chosen as not all forest
variables selected are normally distributed. If a pair of variables was
determined to be collinear (ρ > 0.70), only one of them was retained for
analysis (Table 1, Table S3). This was the case for combined deadwood
diversity (correlated with both lying and standing deadwood diversity,
combined deadwood diversity retained). Plots with missing values for
forest variables at one or both trapping sites were omitted (seven plots).
Prior to analyses, biomass values and fixed effects were log-transformed
(log10(x þ 1)) to increase normality and homoscedasticity. Following
log-transformation, fixed effects were scaled (mean ¼ 0, SD ¼ 1) in all
models. Initial full models were calculated including all fixed effects
(Table 1). Abundances of Coleoptera (one model) and individual feeding
guilds (six models) were analyzed using negative binomial generalized
linear models. Biomass of Coleoptera (one model), feeding guilds (six
models) and family diversity (one model) were analyzed using linear
4

models. Prior to model averaging, Moran's I tests were used to assess
initial models for spatial autocorrelation, comparing residuals with a
dissimilarity matrix of plot geolocations (latitude, longitude) (Table S4).
Final models of each response variable were constructed using the model
averaging approach outlined in Symonds and Moussalli (2010) and
Grueber et al. (2011) (R package ‘MuMIn’, Barton, 2020). This approach
first creates a set of candidate models (from all fixed effects in the full
models) using all possible combinations of fixed effects. Each candidate
model is assigned an Akaike weight based on its AICc value relative to
other candidate models. This weight is indicative of the explanatory
power of individual candidate models with a specific combination of
fixed effects. For example, a candidate model with an Akaike weight of
0.10 has a 10% probability of being the best model to describe the data.
Candidate models with the highest weights were selected until reaching a
cumulative weight of 0.95. Models in the selection were then averaged to
produce a model including all fixed effects that appeared in the averaged
model (accounting for the respective weights) and thus explained the
most variation in the response variables.

To analyze the relationships between Coleoptera composition and
fixed effects, principal component analysis (PCA) using the ‘rda’ function
in the vegan package (Oksanen et al., 2017) was calculated separately on
biomass and abundance values of feeding guilds at plot level. Species
scores were plotted for each response variable following ordination. All
fixed effects included in Table 1 were applied to the rda using the ‘envfit’
function with 10,000 permutations.

3. Results

In total 41,867 Coleoptera specimens comprising 71 families and 8
feeding guilds were collected and identified (Table S2). Herbivores were
the largest guild by abundance (38%), followed by omnivores (21%),
saproxylics (14%) and carnivores (11%). The remaining feeding guilds
(4) jointly comprised less than 25% of individuals sampled. Omnivores
represented ~57% of the total sampled biomass, followed by saproxylics
(15%) and herbivores (13%). The remaining feeding guilds (4) combined
represented less than 15% of the total biomass (Table S1).

Averaged linear models revealed total beetle biomass increased with
mean tree DBH (z ¼ 3.199, p ¼ 0.001) (Fig. 1a), while decreasing with
SSCI (z ¼ 1.581, p ¼ 0.004) (Fig. 1b). Shannon diversity of families
increased withmean ENL at window trap locations (z¼ 2.965, p¼ 0.003)
(Fig. 1c). Among feeding guilds, the biomass of carnivores decreased
with tree BA (z ¼ 2.500, p ¼ 0.012) (Fig. 2a). Fungivore biomass
increased with deciduous tree share (z ¼ 2.032, p ¼ 0.004) (Fig. 2b) and
elevation (z¼ 3.363, p� 0.001) (Fig. 2d) while decreasing with both gap
fraction (z ¼ 3.102, p ¼ 0.002) (Fig. 2c) and tree BA (z ¼ 2.217, p ¼
0.027) (Fig. 2e). Herbivore biomass increased with both elevation (z ¼
2.700, p ¼ 0.007) (Fig. 2f) and UCI at 1–5 m (z ¼ 2.110, p ¼ 0.035)
(Fig. 2g). Omnivore biomass decreased with only herb cover (z ¼ 1.999,
p ¼ 0.046) (Fig. 2h). Saprovore biomass increased with both DBH (z ¼
2.333, p ¼ 0.031) (Fig. 2i) and elevation (z ¼ 2.333, p ¼ 0.019) (Fig. 2j).
Saproxylic biomass increased with lying deadwood volume (z ¼ 2.720, p
¼ 0.007) (Fig. 2k) while decreasing with SSCI (z ¼ 2.338, p ¼ 0.019)
(Fig. 2l) (Table S5).

Fungivore, omnivore, saproxylic and total abundances showed no
significant relationship with any forest variable. Averaged generalized
linear models showed that the abundances of only carnivores, herbivores
and saprovores were related to forest variables (Table S6). Carnivore (t¼
2.333, p¼ 0.019) and saprovore abundance increased with elevation (t¼
2.923, p ¼ 0.003), while herbivore abundance increased with deciduous
tree share (t ¼ 4.232, p � 0.001) (Fig. 3 a‒c). Results were in almost all
cases not related to space, with potential autocorrelation detected for
only carnivore biomass (Moran's I ¼ 0.035, p ¼ 0.001) and saproxylic
abundance (Moran's I ¼ 0.017, p ¼ 0.049) (Table S4).

Principal component analysis revealed for beetle community
composition by biomass similar relationships to forest variables as indi-
vidual biomass analyses, with significant effects from mean tree DBH (R2



Fig. 1. Log-transformed (log10(xþ1)) Coleoptera
biomass and significant (at p < 0.05) log-transformed
(log10(xþ1)) fixed effects (a, b). Shannon diversity of
families and significant fixed effects (c). a) DBH is the
mean tree diameter at breast height. b) SSCI is the
stand structural complexity index. c) ENL is the mean
effective number of layers (ENL) or forest strata
occupied by vegetation. Axes in each figure display
real values for biomass (g) and fixed-effects. Solid
lines give model predictions (95% confidence in-
tervals as dashed lines).
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¼ 0.138, p� 0.001), elevation (R2¼ 0.110, p� 0.001), SSCI (R2¼ 0.124,
p � 0.001), and UCI at 1.5–2 m height (R2 ¼ 0.091, p ¼ 0.003). Addi-
tionally, standing deadwood volume (R2 ¼ 0.052, p¼ 0.039) and tree BA
(R2 ¼ 0.076, p ¼ 0.010) were revealed to be significant (Table S8).
Herbivores, saprovores, and carnivores comprised greater proportions of
communities on plots with higher mean DBH. Saproxylics and omnivores
were present in larger proportions on plots with lower SSCIs. Plots at
higher elevations contained greater proportions of fungivores. The first
two PCs accounted for 52.85% of the variation among sites (Fig. 4a).
Principal component analysis of beetle community composition by
abundance revealed similar significant effects from deciduous tree share
(R2 ¼ 0.193, p � 0.001) and elevation (R2 ¼ 0.073, p ¼ 0.009) as
observed in individual analyses of several feeding guilds. Additionally,
significant for community composition by abundance were lying dead-
wood volume (R2 ¼ 0.154, p¼ 0.005), standing deadwood volume (R2 ¼
0.264, p� 0.001), SSCI (R2¼ 0.084, p¼ 0.007), and tree BA (R2¼ 0.062,
p ¼ 0.028) (Table S10). The first two PCs accounted for 56.00% of the
variation among sites (Fig. 4b). For tables of species’ scores of principal
components and results from fitting of forest variables see supplementary
material (Tables S7�S10).

4. Discussion

The joint analyses of beetle biomass, diversity and abundance in-
dicates that these metrics respond differently to structural elements in
forests. Retention forestry can potentially influence all structural variables
in ways which promote beetles. The differences among feeding guild
biomass in our models can be related to nutritional resources in several
cases, as hypothesized. This is directly observed for saproxylic taxa and
increasing lying deadwood (Lindhe et al., 2005; Bouget et al., 2011, 2013)
and herbivorous taxa and understory complexity (UCI). Increasing UCI
5

may indicate greater availability of host plants for herbivorous taxa
(Willim et al., 2019). The remaining feeding guilds and all Coleoptera
together showed less direct responses than hypothesized, and their re-
lationships to structural elements can be mediated by the resources such
structural elements relate to. Fungivore biomass for example, decreased
with increasing gap fraction, which has been experimentally shown to
reduce the observations and species richness of fungi in temperate forests
(Brazee et al., 2014). Due to increased fungal bodies observed on dead-
wood (Blaser et al., 2013) we expected to see higher fungivore biomass
with greater deadwood volumes, which was not the case. We found,
however, that the proportion of deciduous trees, which has been shown to
positively scale with the amount of leaf litter and coarse woody debris
(Pedlar et al., 2002) and thus the amount of fungi (Unterseher et al., 2013;
Purahong et al., 2015), had a positive effect on the biomass of fungivores.
The unexpected findings that both fungivore and herbivore biomass
increased with elevation could possibly be due to higher growth rates of
some central European tree species (Pretzsch et al., 2020) combined with
denser stands (Maz�on et al., 2020) at higher elevations, providing more
resources for both feeding guilds. Increased growth rates and denser forest
stands may also partially explain the increase in saprovore biomass
observed with elevation, via decomposition driven by denser tree can-
opies (Wallace et al., 2018), though our data cannot support such con-
clusions and these relationships remain unclear. Similarly, it is unclear
how omnivore biomass decreases with increasing herb cover. The points
in Fig. 2h showmuch greater variation at higher herb cover indicating this
relationship could be partly driven by stochasticity.

Saproxylic and overall biomasses decreased with stand structural
complexity (SSCI) likely due to microclimatic variations correlated with
higher forest strata (Willim et al., 2019) and structural complexity
(Ehbrecht et al., 2016), reducing flying beetle activity and decreasing
their presence in samples.



Fig. 2. Log-transformed (log10(xþ1)) biomass of individual functional groups (a; carnivores, b‒e; fungivores, f‒g; herbivores, h; omnivores, i‒j; saprovores, k‒l;
saproxylics) and significant (at p < 0.05) log-transformed (log10(xþ1)) fixed effects. a) and e) Tree BA represents tree basal area. g) UCI is understory complexity index
at 1–5 m. i) DBH is mean diameter at breast height. l) SSCI is stand structural complexity index (SSCI). Axes in each figure display real values for biomass (g) and fixed-
effects. Solid lines give model predictions (95% confidence intervals as dashed lines).
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Fig. 3. Abundances of Coleoptera feeding guilds (a; carnivores, b; herbivores, c; saprovores) and significant fixed effects. Solid lines give model predictions (95%
confidence intervals in dashed lines).

Fig. 4. Biplot of principal component analysis for a)
log-transformed (log10(xþ1)) Coleoptera biomass,
and b) Coleoptera composition by abundance.
Feeding guild labels represent plotted species' scores
(Table S8 biomass, Table S10 abundance). Results of
environmental fitting were plotted as arrows using
only significant variables (permutations ¼ 10,000, p
< 0.05) with arrow length corresponding to explained
variance (R2) of fixed effects (Table S9 biomass,
Table S11 abundance). Abbreviations are as follows:
stand structural complexity index (SSCI), diameter at
breast height (DBH), understory complexity index at
1.5–2.0 m (UCI), tree basal area (BA). Standing and
lying deadwood represent volumes (m3).
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While initially hypothesized that total beetle biomass would increase
with increasing values of variables characterizing greater amounts of
forest habitat such as forest cover, it increased with only mean tree
diameter at breast height (DBH). Among feeding guilds, only saprovore
biomass increased significantly with DBH, while the biomass of herbi-
vores and omnivores was nearly significantly related to DBH. Tree basal
area (BA) was included in models to more comprehensively examine the
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relationships between response variables and tree sizes/stand densities
(Zeide, 2005), but showed significant relationships with only carnivore
and fungivore biomass, differing from mean DBH. For carnivores, this
effect was significant following model averaging albeit with a signal of
spatial influences according to Moran's I. As biomass is a proxy for
resource availability (Wardhaugh et al., 2012; Wardhaugh, 2013), the
relationship between DBH and beetle biomasses may be mediated by
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resources utilized by the feeding guilds measured. Feeding resources
from larger trees could be increased deadwood amounts (Oettel et al.,
2020; �Senhofa et al., 2020), increased growth of fungi (Parmasto, 2001;
�Odor et al., 2006), and more living tree material available. Therefore,
there are positive, albeit weak, relationships between feeding guilds'
biomass and DBH, most apparent when all groups are combined. Higher
biomass of feeding guilds emphasizes the importance of maintaining
larger trees to promote forest beetles, as larger trees are important ele-
ments for forest habitat (Larson, 1995; Manning et al., 2009; Lutz et al.,
2018), providing more resources and microhabitats for insects (Hor�ak,
2017). The negative influence of tree BA on the biomass of carnivores
and fungivores suggests that this cumulative effect requires not higher
numbers of trees, but the presence of large trees, possibly in combination
with uneven layering of the stand.

Only the effective number of layers (ENL) proved significant for
beetle family diversity. As higher values of this index characterize more
diverse and more evenly-layered stands, it indicates the presence of more
heterogenous vegetation. This is possibly due to a structurally more
diverse assemblage of host plants yielding a more diverse assemblage of
beetles utilizing different resources. Greater host plant diversity could
cascade to other similarly related feeding guilds such as carnivores, and
omnivores. In addition, it has been found that diversity in the age
structure of forests can benefit multiple taxa (Schall et al., 2018). Sur-
prisingly, no other forest variables representing forest heterogeneity
(including tree species richness, understory species richness, understory
complexity) were found to be significant for the diversity of beetle
families, contrary to our hypotheses. This could possibly be due to the
coarse taxonomic unit used in analyses, as greater variation in beetle
species diversity between research plots would likely result in a more
nuanced relationship. In addition, our results could be influenced by the
sampling method, which was conducted in only the understory,
providing a snapshot of only one stratum of the forest stand. Several
studies have demonstrated that the sampling of multiple forest strata
(Proch�azka et al., 2018; Stone et al., 2018; Leidinger et al., 2019),
multi-year sampling (Parmain et al., 2013; Chen et al., 2014) and the use
of sampling methods complementary to window traps such as pitfall
traps and trap nests (Staab et al., 2021) or malaise traps (Lamarre et al.,
2012) can together provide more complete inventory of insects in forests.

It was expected (similar to feeding guild biomass) that abundance of
more specialized feeding guilds such as fungivores and saproxylics would
display stronger relationships than more generalized guilds such as
saprovores. It is surprising then that carnivores, herbivores and sapro-
vores are the only feeding guilds showing significant relationships for
abundance. With herbivores, it is expected that increasing deciduous tree
share promotes larger abundances of leaf-feeding herbivores (Veh-
vil€ainen et al., 2007), via the presence of more feeding resources of
different tree species. However, higher elevation, which truncates insect
flight periods (Welti et al., 2021) was not expected to increase the
abundance of any feeding guilds. While abundance decreasing with
elevation is a general trend with many terrestrial insects, it is not uni-
formly the case for all species (Hodkinson, 2005; Binkenstein et al.,
2017). Our observed results could then simply be driven by several
species within the carnivore and saprovore feeding guilds, which are
more abundant at higher elevations. Abundance and biomass differed in
their relationships with forest elements as biomass can be more strongly
affected by few large-bodied individuals (Sample et al., 1993), while
abundance can be strongly influenced by locally numerous species
(Gaston and Lawton, 1988), possibly exploiting a small amount of locally
available feeding/nesting resources. In this way, biomass may be more
indicative of resource availability and stability as larger insects require
greater amounts of resources (Ribeiro and Freitas, 2011).

Principal component analysis (PCA) of composition by biomass sup-
ported the conclusions from averagedmodels using biomass of individual
feeding guilds, with the addition of standing deadwood volume and tree
BA as important variables in structuring composition. Notably, each
feeding guild was present in greater proportions at plots with the highest
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DBH values, concurrent with hypotheses and results regarding resource
availability (Welti et al., 2020). The PCA of composition by abundance
was similar to, yet different from, the PCA by biomass. The absence of
DBH from the PCA using abundance indicates that for the abundance of
same feeding guilds, forest variables indicating the amount of resources
becomes less important. Instead, composition by abundance is seemingly
influenced by structural variables such as standing deadwood (Jonsell
et al., 1998; Bouget and Duelli, 2004; Gullan and Cranston, 2014) which
relate to the presence of resources. Standing deadwood and lying dead-
wood were similarly related to composition by abundance, which can
possibly be due to similar ecological use by both structures. As seen with
individual biomass models, and PCA using biomass, SSCI was significant
for structuring communities by abundance. However, what is observed is
greater compositional similarity at higher values of SSCI, while plots with
more distinct communities plot with other variables such as standing
deadwood. The clustering of points with SSCI while feeding guild spe-
cies’ scores plot elsewhere in the PCA, indicates high abundances of
smaller individuals withinmultiple feeding guilds with greater SSCI. Tree
BA was also important for composition by abundance, and as observed
with biomass increases the proportions of saproxylics and omnivores.
While significant for composition by biomass, UCI was only nearly sig-
nificant for composition by abundance. Comparing PCAs using biomass
and abundance separately shows that the twometrics, though similar, are
not identical. The differing responses to structural elements these
composition metrics show emphasizes the importance of understanding
the metric used, and considering both (if possible) when developing
strategies to promote forest beetles.

5. Conclusions

Management of forests at stand level determines the availability of
structural elements. The effects of forest structural elements on beetle
biomass, diversity and abundance are complex and interrelated, making
management decisions with the intent of promoting them difficult.
Structural elements can be augmented through retention forestry.
Maintaining unevenly layered stands can promote beetle diversity via the
creation of more forest strata occupied by vegetation. The retention of
forest elements including large trees, lying and standing deadwood, and
more complex understories can have positive influences on the biomass
and abundance of beetle feeding guilds via direct and indirect resource
availability, with strong yet varying influences on community structure,
depending on the biodiversity metric used. The varying relationships
with forest structural elements, and the differences in responses between
biomass, diversity and abundance suggest that multiple specific elements
are needed to promote forest beetles. Management strategies should
therefore prioritize multiple forest elements simultaneously to account
for the varying responses of different metrics to assess these efforts, and
achieve greater specificity by factoring resource use of different feeding
guilds.
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